Lesson No.27

Programmable Interval Timer

Another very important peripheral device is the Programmable Interval Timer (PIT), the chip numbered 8254. This chip has a precise input frequency of 1.19318 MHz. This frequency is fixed regardless of the processor clock. Inside the chip is a 16bit divisor which divides this input frequency and the output is connected to the IRQ 0 line of the PIC. The special number 0 if placed in the divisor means a divisor of 65536 and not 0. The standard divisor is 0 unless we change it. Therefore by default IRQ 0 is generated 1193180/65536=18.2 times per second. This is called the timer tick. There is an interval of about 55ms between two timer ticks. The system time is maintained with the timer interrupt. This is the highest priority interrupt and breaks whatever is executing. Time can be maintained with this interrupt as this frequency is very precise and is part of the IBM standard.

When writing a TSR we give control back to DOS so TSR activation, reactivation and action is solely interrupt based, whether this is a hardware interrupt or a software one. Control is never given back; it must be caught, just like we caught control by hooking the keyboard interrupt. Our next example will hook the timer interrupt and display a tick count on the screen.

	
	Example 9.7

	001

002

003

004

005

006

007

008
009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072
073

074
	; display a tick count on the top right of screen
[org 0x0100]

 jmp start

tickcount: dw 0

; subroutine to print a number at top left of screen

; takes the number to be printed as its parameter
printnum: push bp

 mov bp, sp

 push es

 push ax

 push bx

 push cx

 push dx

 push di

 mov ax, 0xb800

 mov es, ax ; point es to video base
 mov ax, [bp+4] ; load number in ax

 mov bx, 10 ; use base 10 for division

 mov cx, 0 ; initialize count of digits
nextdigit: mov dx, 0 ; zero upper half of dividend

 div bx ; divide by 10

 add dl, 0x30 ; convert digit into ascii value

 push dx ; save ascii value on stack
 inc cx ; increment count of values
 cmp ax, 0 ; is the quotient zero

 jnz nextdigit ; if no divide it again
 mov di, 140 ; point di to 70th column
nextpos: pop dx ; remove a digit from the stack
 mov dh, 0x07 ; use normal attribute
 mov [es:di], dx ; print char on screen

 add di, 2 ; move to next screen location

 loop nextpos ; repeat for all digits on stack
 pop di

 pop dx

 pop cx

 pop bx

 pop ax

 pop es

 pop bp

 ret 2

; timer interrupt service routine
timer: push ax

 inc word [cs:tickcount]; increment tick count
 push word [cs:tickcount]

 call printnum ; print tick count
 mov al, 0x20

 out 0x20, al ; end of interrupt
 pop ax

 iret ; return from interrupt
start: xor ax, ax

 mov es, ax ; point es to IVT base
 cli ; disable interrupts
 mov word [es:8*4], timer; store offset at n*4

 mov [es:8*4+2], cs ; store segment at n*4+2
 sti ; enable interrupts

 mov dx, start ; end of resident portion
 add dx, 15 ; round up to next para

 mov cl, 4
 shr dx, cl ; number of paras
 mov ax, 0x3100 ; terminate and stay resident
 int 0x21

When we execute the program the counter starts on the screen. Whatever we do, take directory, open EDIT, the debugger etc. the counter remains running on the screen. No one is giving control to the program; the program is getting executed as a result of timer generating INT 8 after every 55ms.

Our next example will hook both the keyboard and timer interrupts. When the shift key is pressed the tick count starts incrementing and as soon as the shift key is released the tick count stops. Both interrupt handlers are communicating through a common variable. The keyboard interrupt sets this variable while the timer interrupts modifies its behavior according to this variable.

	
	Example 9.8

	001

002

003

004

005

006

007

008
009-049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113
	; display a tick count while the left shift key is down
[org 0x0100]

 jmp start

seconds: dw 0

timerflag: dw 0

oldkb: dd 0

;;;;; COPY LINES 007-047 FROM EXAMPLE 9.7 (printnum) ;;;;;
; keyboard interrupt service routine
kbisr: push ax

 in al, 0x60 ; read char from keyboard port
 cmp al, 0x2a ; has the left shift pressed
 jne nextcmp ; no, try next comparison
 cmp word [cs:timerflag], 1; is the flag already set
 je exit ; yes, leave the ISR
 mov word [cs:timerflag], 1; set flag to start printing
 jmp exit ; leave the ISR

nextcmp: cmp al, 0xaa ; has the left shift released
 jne nomatch ; no, chain to old ISR
 mov word [cs:timerflag], 0; reset flag to stop printing
 jmp exit ; leave the interrupt routine
nomatch: pop ax

 jmp far [cs:oldkb] ; call original ISR
exit: mov al, 0x20

 out 0x20, al ; send EOI to PIC
 pop ax

 iret ; return from interrupt

; timer interrupt service routine
timer: push ax

 cmp word [cs:timerflag], 1 ; is the printing flag set
 jne skipall ; no, leave the ISR
 inc word [cs:seconds] ; increment tick count
 push word [cs:seconds]
 call printnum ; print tick count
skipall: mov al, 0x20

 out 0x20, al ; send EOI to PIC

 pop ax

 iret ; return from interrupt
start: xor ax, ax

 mov es, ax ; point es to IVT base
 mov ax, [es:9*4]

 mov [oldkb], ax ; save offset of old routine
 mov ax, [es:9*4+2]

 mov [oldkb+2], ax ; save segment of old routine
 cli ; disable interrupts
 mov word [es:9*4], kbisr ; store offset at n*4

 mov [es:9*4+2], cs ; store segment at n*4+2
 mov word [es:8*4], timer ; store offset at n*4
 mov [es:8*4+2], cs ; store segment at n*4+
 sti ; enable interrupts

 mov dx, start ; end of resident portion
 add dx, 15 ; round up to next para

 mov cl, 4
 shr dx, cl ; number of paras
 mov ax, 0x3100 ; terminate and stay resident
 int 0x21

	006
	This flag is one when the timer interrupt should increment and zero when it should not.

	058-059
	As the keyboard controller repeatedly generates the press code if the release code does not come in a specified time, we have placed a check to not repeatedly set it to one.

	058
	Another way to access TSR data is using the CS override instead of initializing DS. It is common mistake not to initialize DS and also not put in CS override in a real time interrupt handler.

When we execute the program and the shift key is presseed, the counter starts incrementing. When the key is released the counter stops. When it is pressed again the counter resumes counting. As this is made as a TSR any other program can be loaded and will work properly alongside the TSR.

1.1. Parallel Port

Computers can control external hardware through various external ports like the parallel port, the serial port, and the new additions USB and FireWire. Using this, computers can be used to control almost anything. For our examples we will use the parallel port. The parallel port has two views, the connector that the external world sees and the parallel port controller ports through which the processor communicates with the device connected to the parallel port.

The parallel port connector is a 25pin connector called DB-25. Different pins of this connector have different meanings. Some are meaningful only with the printer
. This is a bidirectional port so there are some pins to take data from the processor to the parallel port and others to take data from the parallel port to the processor. Important pins for our use are the data pins from pin 2 to pin 9 that take data from the processor to the device. Pin 10, the ACK pin, is normally used by the printer to acknowledge the receipt of data and show the willingness to receive more data. Signalling this pin generates IRQ 7 if enabled in the PIC and in the parallel port controller. Pin 18-25 are ground and must be connected to the external circuit ground to provide the common reference point otherwise they won’t understand each other voltage levels. Like the datum point in a graph this is the datum point of an electrical circuit. The remaining pins are not of our concern in these examples.

This is the external view of the parallel port. The processor cannot see these pins. The processor uses the I/O ports of the parallel port controller. The first parallel port LPT1
 has ports designated from 378 to 37A. The first port 378 is the data port. If we use the OUT instruction on this port, 1 bits result in a 5V signal on the corresponding pin and a 0 bits result in a 0V signal on the corresponding pin.

Port 37A is the control port. Our interest is with bit 4 of this port which enables the IRQ 7 triggering by the ACK pin. We have attached a circuit that connects 8 LEDs with the parallel port pins. The following examples sends the scancode of the key pressed to the parallel port so that it is visible on LEDs.

	
	Example 9.9

	001

002

003

004

005

006

007

008
009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035
	; show scancode on external LEDs connected through parallel port

[org 0x0100]

 jmp start

oldisr: dd 0 ; space for saving old ISR
; keyboard interrupt service routine
kbisr: push ax

 push dx

 in al, 0x60 ; read char from keyboard port
 mov dx, 0x378

 out dx, al ; write char to parallel port
 pop ax

 pop dx

 jmp far [cs:oldisr] ; call original ISR
start: xor ax, ax

 mov es, ax ; point es to IVT base
 mov ax, [es:9*4]

 mov [oldisr], ax ; save offset of old routine
 mov ax, [es:9*4+2]

 mov [oldisr+2], ax ; save segment of old routine
 cli ; disable interrupts
 mov word [es:9*4], kbisr ; store offset at n*4

 mov [es:9*4+2], cs ; store segment at n*4+2
 sti ; enable interrupts

 mov dx, start ; end of resident portion
 add dx, 15 ; round up to next para

 mov cl, 4
 shr dx, cl ; number of paras
 mov ax, 0x3100 ; terminate and stay resident
 int 0x21

The following example uses the same LED circuit and sends data such that LEDs switch on and off turn by turn so that it looks like light is moving back and forth.

	
	Example 9.10

	001

002

003

004

005

006

007

008
009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056
	; show lights moving back and forth on external LEDs
[org 0x0100]

 jmp start

signal: db 1 ; current state of lights
direction: db 0 ; current direction of motion
; timer interrupt service routine
timer: push ax

 push dx

 push ds

 push cs

 pop ds ; initialize ds to data segment
 cmp byte [direction], 1; are moving in right direction
 je moveright ; yes, go to shift right code
 shl byte [signal], 1 ; shift left state of lights
 jnc output ; no jump to change direction

 mov byte [direction], 1; change direction to right
 mov byte [signal], 0x80; turn on left most light
 jmp output ; proceed to send signal
moveright: shr byte [signal], 1 ; shift right state of lights
 jnc output ; no jump to change direction

 mov byte [direction], 0; change direction to left
 mov byte [signal], 1 ; turn on right most light
output: mov al, [signal] ; load lights state in al
 mov dx, 0x378 ; parallel port data port
 out dx, al ; send light state of port
 mov al, 0x20

 out 0x20, al ; send EOI on PIC
 pop ds

 pop dx

 pop ax

 iret ; return from interrupt
start: xor ax, ax

 mov es, ax ; point es to IVT base
 cli ; disable interrupts
 mov word [es:8*4], timer ; store offset at n*4

 mov [es:8*4+2], cs ; store segment at n*4+2
 sti ; enable interrupts

 mov dx, start ; end of resident portion
 add dx, 15 ; round up to next para

 mov cl, 4
 shr dx, cl ; number of paras
 mov ax, 0x3100 ; terminate and stay resident
 int 0x21

We will now use the parallel port to control a slightly complicated circuit. This time we will also use the parallel port interrupt. We are using a 220 V bulb with AC input. AC current is 50Hz sine wave. We have made our circuit such that it triggers the parallel port interrupt whenever the since wave crosses zero. We have control of passing the AC current to the bulb. We control it such that in every cycle only a fixed percentage of time the current passes on to the bulb. Using this we can control the intensity or glow of the bulb.

Our first example will slowly turn on the bulb by increasing the power provided using the mechanism just described.

	
	Example 9.11

	001

002

003

004

005

006

007

008
009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066
067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107
108
	; slowly turn on a bulb by gradually increasing the power provided

[org 0x0100]

 jmp start

flag: db 0 ; next time turn on or turn off
stop: db 0 ; flag to terminate the program
divider: dw 11000 ; divider for minimum intensity
oldtimer: dd 0 ; space for saving old isr

; timer interrupt service routine
timer: push ax

 push dx

 cmp byte [cs:flag], 0 ; are we here to turn off

 je switchoff ; yes, go to turn off code

switchon: mov al, 1

 mov dx, 0x378

 out dx, al ; no, turn the bulb on
 mov ax, 0x0100

 out 0x40, al ; set timer divisor LSB to 0
 mov al, ah

 out 0x40, al ; set timer divisor MSB to 1
 mov byte [cs:flag], 0 ; flag next timer to switch off
 jmp exit ; leave the interrupt routine
switchoff: xor ax, ax

 mov dx, 0x378

 out dx, al ; turn the bulb off
exit: mov al, 0x20

 out 0x20, al ; send EOI to PIC
 pop dx

 pop ax

 iret ; return from interrupt
; parallel port interrupt service routine
parallel: push ax

 mov al, 0x30 ; set timer to one shot mode
 out 0x43, al
 cmp word [cs:divider], 100; is the current divisor 100
 je stopit ; yes, stop
 sub word [cs:divider], 10; decrease the divisor by 10
 mov ax, [cs:divider]
 out 0x40, al ; load divisor LSB in timer
 mov al, ah

 out 0x40, al ; load divisor MSB in timer
 mov byte [cs:flag], 1 ; flag next timer to switch on
 mov al, 0x20

 out 0x20, al ; send EOI to PIC
 pop ax

 iret ; return from interrupt
stopit: mov byte [stop], 1 ; flag to terminate the program
 mov al, 0x20

 out 0x20, al ; send EOI to PIC
 pop ax

 iret ; return from interrupt
start: xor ax, ax

 mov es, ax ; point es to IVT base
 mov ax, [es:0x08*4]

 mov [oldtimer], ax ; save offset of old routine
 mov ax, [es:0x08*4+2]

 mov [oldtimer+2], ax ; save segment of old routine
 cli ; disable interrupts
 mov word [es:0x08*4], timer ; store offset at n*4

 mov [es:0x08*4+2], cs ; store segment at n*4+2
 mov word [es:0x0F*4], parallel ; store offset at n*4

 mov [es:0x0F*4+2], cs ; store segment at n*4+2
 sti ; enable interrupts

 mov dx, 0x37A

 in al, dx ; parallel port control register
 or al, 0x10 ; turn interrupt enable bit on
 out dx, al ; write back register
 in al, 0x21 ; read interrupt mask register
 and al, 0x7F ; enable IRQ7 for parallel port
 out 0x21, al ; write back register
recheck: cmp byte [stop], 1 ; is the termination flag set
 jne recheck ; no, check again
 mov dx, 0x37A
 in al, dx ; parallel port control register
 and al, 0xEF ; turn interrupt enable bit off
 out dx, al ; write back register
 in al, 0x21 ; read interrupt mask register
 or al, 0x80 ; disable IRQ7 for parallel port
 out 0x21, al ; write back regsiter
 cli ; disable interrupts
 mov ax, [oldtimer] ; read old timer ISR offset
 mov [es:0x08*4], ax ; restore old timer ISR offset
 mov ax, [oldtimer+2] ; read old timer ISR segment
 mov [es:0x08*4+2], ax ; restore old timer ISR segment
 sti ; enable interrupts
 mov ax, 0x4c00 ; terminate program
 int 0x21

The next example is simply the opposite of the previous. It slowly turns the bulb off from maximum glow to no glow.

	
	Example 9.12

	001

002

003

004

005

006

007

008
009

010-037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107
108
	; slowly turn off a bulb by gradually decreasing the power provided

[org 0x0100]

 jmp start

flag: db 0 ; next time turn on or turn off
stop: db 0 ; flag to terminate the program
divider: dw 0 ; divider for maximum intensity
oldtimer: dd 0 ; space for saving old isr

;;;;; COPY LINES 009-036 FROM EXAMPLE 9.11 (timer) ;;;;;
; parallel port interrupt service routine
parallel: push ax

 mov al, 0x30 ; set timer to one shot mode
 out 0x43, al
 cmp word [cs:divider], 11000; current divisor is 11000
 je stopit ; yes, stop
 add word [cs:divider], 10; increase the divisor by 10
 mov ax, [cs:divider]
 out 0x40, al ; load divisor LSB in timer
 mov al, ah

 out 0x40, al ; load divisor MSB in timer
 mov byte [cs:flag], 1 ; flag next timer to switch on
 mov al, 0x20

 out 0x20, al ; send EOI to PIC
 pop ax

 iret ; return from interrupt
stopit: mov byte [stop], 1 ; flag to terminate the program
 mov al, 0x20

 out 0x20, al ; send EOI to PIC
 pop ax

 iret ; return from interrupt
start: xor ax, ax

 mov es, ax ; point es to IVT base
 mov ax, [es:0x08*4]

 mov [oldtimer], ax ; save offset of old routine
 mov ax, [es:0x08*4+2]

 mov [oldtimer+2], ax ; save segment of old routine
 cli ; disable interrupts
 mov word [es:0x08*4], timer ; store offset at n*4

 mov [es:0x08*4+2], cs ; store segment at n*4+2
 mov word [es:0x0F*4], parallel ; store offset at n*4

 mov [es:0x0F*4+2], cs ; store segment at n*4+2
 sti ; enable interrupts

 mov dx, 0x37A

 in al, dx ; parallel port control register
 or al, 0x10 ; turn interrupt enable bit on
 out dx, al ; write back register
 in al, 0x21 ; read interrupt mask register
 and al, 0x7F ; enable IRQ7 for parallel port
 out 0x21, al ; write back register
recheck: cmp byte [stop], 1 ; is the termination flag set
 jne recheck ; no, check again
 mov dx, 0x37A
 in al, dx ; parallel port control register
 and al, 0xEF ; turn interrupt enable bit off
 out dx, al ; write back register
 in al, 0x21 ; read interrupt mask register
 or al, 0x80 ; disable IRQ7 for parallel port
 out 0x21, al ; write back regsiter
 cli ; disable interrupts
 mov ax, [oldtimer] ; read old timer ISR offset
 mov [es:0x08*4], ax ; restore old timer ISR offset
 mov ax, [oldtimer+2] ; read old timer ISR segment
 mov [es:0x08*4+2], ax ; restore old timer ISR segment
 sti ; enable interrupts
 mov ax, 0x4c00 ; terminate program
 int 0x21

This example is a mix of the previous two. Here we can increase the bulb intensity with F11 and decrease it with F12.

	
	Example 9.13

	001

002

003

004

005

006

007

008
009-036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111
	; control external bulb intensity with F11 and F12
[org 0x0100]

 jmp start

flag: db 0 ; next time turn on or turn off
divider: dw 100 ; initial timer divider

oldkb: dd 0 ; space for saving old ISR

;;;;; COPY LINES 009-036 FROM EXAMPLE 9.11 (timer) ;;;;;
; keyboard interrupt service routine
kbisr: push ax

 in al, 0x60
 cmp al, 0x57

 jne nextcmp

 cmp word [cs:divider], 11000

 je exitkb

 add word [cs:divider], 100

 jmp exitkb

nextcmp: cmp al, 0x58

 jne chain

 cmp word [cs:divider], 100

 je exitkb

 sub word [cs:divider], 100

 jmp exitkb

exitkb: mov al, 0x20

 out 0x20, al

 pop ax

 iret

chain: pop ax

 jmp far [cs:oldkb]

; parallel port interrupt service routine

parallel: push ax

 mov al, 0x30 ; set timer to one shot mode
 out 0x43, al
 mov ax, [cs:divider]
 out 0x40, al ; load divisor LSB in timer
 mov al, ah

 out 0x40, al ; load divisor MSB in timer
 mov byte [cs:flag], 1 ; flag next timer to switch on
 mov al, 0x20

 out 0x20, al ; send EOI to PIC
 pop ax

 iret ; return from interrupt
start: xor ax, ax

 mov es, ax ; point es to IVT base
 mov ax, [es:0x09*4]

 mov [oldkb], ax ; save offset of old routine
 mov ax, [es:0x09*4+2]

 mov [oldkb+2], ax ; save segment of old routine
 cli ; disable interrupts
 mov word [es:0x08*4], timer ; store offset at n*4
 mov [es:0x08*4+2], cs ; store segment at n*4+2
 mov word [es:0x09*4], kbisr ; store offset at n*4
 mov [es:0x09*4+2], cs ; store segment at n*4+2
 mov word [es:0x0F*4], parallel ; store offset at n*4
 mov [es:0x0F*4+2], cs ; store segment at n*4+2
 sti ; enable interrupts

 mov dx, 0x37A

 in al, dx ; parallel port control register
 or al, 0x10 ; turn interrupt enable bit on
 out dx, al ; write back register
 in al, 0x21 ; read interrupt mask register
 and al, 0x7F ; enable IRQ7 for parallel port
 out 0x21, al ; write back register
 mov dx, start ; end of resident portion
 add dx, 15 ; round up to next para

 mov cl, 4
 shr dx, cl ; number of paras
 mov ax, 0x3100 ; terminate and stay resident
 int 0x21

Exercises

1. Suggest a reason for the following. The statements are all true.
a. We should disable interrupts while hooking interrupt 8h. I.e. while placing its segment and offset in the interrupt vector table.
b. We need not do this for interrupt 80h.
c. We need not do this when hooking interrupt 8h from inside the interrupt handler of interrupt 80h.
d. We should disable interrupts while we are changing the stack (SS and SP).
e. EOI is not sent from an interrupt handler which does interrupt chaining.
f. If no EOI is sent from interrupt 9h and no chaining is done, interrupt 8h still comes if the interrupt flag is on.
g. After getting the size in bytes by putting a label at the end of a COM TSR, 0fh is added before dividing by 10h.
h. Interrupts are disabled but divide by zero interrupt still comes.
2. If no hardware interrupts are coming, what are all possible reasons?
3. Write a program to make an asterisks travel the border of the screen, from upper left to upper right to lower right to lower left and back to upper left indefinitely, making each movement after one second.

4. [Musical Arrow] Write a TSR to make an arrow travel the border of the screen from top left to top right to bottom right to bottom left and back to top left at the speed of 36.4 locations per second. The arrow should not destroy the data beneath it and should be restored as soon as the arrow moves forward.

The arrow head should point in the direction of movement using the characters > V < and ^. The journey should be accompanied by a different tone from the pc speaker for each side of the screen. Do interrupt chaining so that running the TSR 10 times produces 10 arrows travelling at different locations.

HINT: At the start you will need to reprogram channel 0 for 36.4 interrupts per second, double the normal. You will have to reprogram channel 2 at every direction change, though you can enable the speaker once at the very start.

5. In the above TSR hook the keyboard interrupt as well and check if 'q' is pressed. If not chain to the old interrupt, if yes restore everything and remove the TSR from memory. The effect should be that pressing 'q' removes one moving arrow. If you do interrupt chaining when pressing 'q' as well, it will remove all arrows at once.

6. Write a TSR to rotate the screen (scroll up and copy the old top most line to the bottom) while F10 is pressed. The screen will keep rotating while F10 is pressed at 18.2 rows per second. As soon as F10 is released the rotation should stop and the original screen restored. A secondary buffer of only 160 bytes (one line of screen) can be used.

7. Write a TSR that hooks software interrupt 0x80 and the timer interrupt. The software interrupt is called by other programs with the address of a far function in ES:DI and the number of timer ticks after which to call back that function in CX. The interrupt records this information and returns to the caller. The function will actually be called by the timer interrupt after the desired number of ticks. The maximum number of functions and their ticks can be fixed to 8.
8. Write a TSR to clear the screen when CTRL key is pressed and restore it when it is released.

9. Write a TSR to disable all writes to the hard disk when F10 is pressed and re-enable when pressed again like a toggle.

HINT: To write to the hard disk programs call the BIOS service INT 0x13 with AH=3.

10. Write a keyboard interrupt handler that disables the timer interrupt (no timer interrupt should come) while Q is pressed. It should be re-enabled as soon as Q is released.
11. Write a TSR to calculate the current typing speed of the user. Current typing speed is the number of characters typed by the user in the last five seconds. The speed should be represented by printing asterisks at the right border (80th column) of the screen starting from the upper right to the lower right corner (growing downwards). Draw n asterisks if the user typed n characters in the last five seconds. The count should be updated every second.

12. Write a TSR to show a clock in the upper right corner of the screen in the format HH:MM:SS.DD where HH is hours in 24 hour format, MM is minutes, SS is seconds and DD is hundredth of second. The clock should beep twice for one second each time with half a second interval in between at the start of every minute at a frequency of your choice.

HINT: IBM PC uses a Real Time Clock (RTC) chip to keep track of time while switched off. It provides clock and calendar functions through its two I/O ports 70h and 71h. It is used as follows:

 mov al, <command>
 out 0x70, al ; command byte written at first port
 jmp D1 ; waste one instruction time
D1: in al, 0x71 ; result of command is in AL now

Following are few commands

00 Get current second

02 Get current minute

04 Get current hour

All numbers returned by RTC are in BCD. E.g. if it is 6:30 the second and third command will return 0x30 and 0x06 respectively in al.
� The parallel port is most commonly used with the printer. However some new printers have started using the USB port.

� Older computer had more than one parallel port named LPT2 and having ports from 278-27A.

